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The hydrodynamic stability of steady axisymmetric thermocapillary flow in a 
cylindrical liquid bridge is investigated by linear stability theory. The basic state and 
the three-dimensional disturbance equations are solved by various spectral methods 
for aspect ratios close to unity. The critical modes have azimuthal wavenumber one 
and the most dangerous disturbance is either a pure hydrodynamic steady mode or 
an oscillatory hydrothermal wave, depending on the Prandtl number. The influence 
of heat transfer through the free surface, additional buoyancy forces, and variations 
of the aspect ratio on the stability boundaries and the neutral mode are discussed. 

1. Introduction 
A particular type of convection arises if part of the bounding surface of a volume 

of liquid is subject to tangential stresses. These stresses can be due to a non-uniform 
surface tension along the interface of two immiscible liquids, and may be caused by 
a spatial variation of the surface temperature or chemical composition. In the case 
of tangential temperature gradients the resulting flow is called thermocapillary 
convection. 

Thermocapillary-force-driven flows have received increasing attention in crystal 
growth and materials science during the past decade. In particular, in the 
containerless method of float-zone crystal-growth, where a free surface with surface 
tension is utilized to support a hot cylinder-like volume of molten material between 
the colder ends of a feed and seed crystal, the required temperature gradients drive 
thermocapillary convection in the melt. This flow becomes dominant over buoyant 
convection if the liquid volume is small or if the process is conducted in a low-gravity 
environment. Sometimes, a certain degree of convection is desired to avoid 
macrosegregation. However, as spatio-temporal flows evolve due to an increased 
temperature gradient, undesired inhomogeneities in composition of the single crystal 
can result (for recent experiments, see Croll et al. 1991). For a better understanding 
and optimization of these crystal growth processes, model problems have been 
developed and some are now studied as paradigms similar to, for example, the related 
driven-cavity problem. 

One of the major difficulties in the theoretical modelling of crystal growth is that 
the geometry of the boundary of the liquid volume is not known a priori. Phase 
changes due to melting and solidification pose a Stefan problem and also the position 
of the free surface has to be determined as a part of the solution. In addition the non- 
isothermal, often multicomponent, fluid is subject to coupled thermo- and 
solutocapillary convection as well as, in the presence of gravity, multicomponent 
buoyant convection. Finally, heat loss to the environment can be conductive, 
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convective and radiative. When studying primarily thermocapillary convection 
some of these difficulties can be circumvented by considering non-isothermal liquid 
bridges. The most common model is that of a cylindrical liquid bridge formed by a 
liquid drop suspended between two rigid planar circular disks. Driving of the flow is 
provided by keeping the disks at  different temperatures or by imposing some 
temperature distribution on the free surface. 

The strength of thermocapillary convection is determined by the maximum 
absolute value of the tangential temperature gradient occurring in the system. For 
fluids with small Prandtl number the corresponding dimensionless parameter is the 
surface tension Reynolds number 

yd AT 
R e = - ,  

P V 2  

where p and v are the density and kinematic viscosity of the fluid, y is the negative 
slope of the surface tension with respect to the temperature, and d and AT are the 
characteristic linear dimension and an imposed temperature variation. For high 
Prandtl numbers Pr even weak convection can lead to a convective crowding of 
isotherms and to localized steep temperature gradients. Hence, the Marangoni 
number Ma = Re Pr is the appropriate parameter if Pr is large. 

For creeping flow (Re 6 1) Rybicki & Floryan (1987) have calculated the steady 
two-dimensional thermocapillary convection numerically in the limit of zero Prandtl 
number for cylindrical liquid bridges with different imposed temperature profiles and 
aspect ratios. The main conclusion drawn is that, for small driving, the flow consists 
of one or more Moffat eddies, the detailed structure depending on the geometry and 
the external heat load. Kuhlmann (1989) solved the Stokes flow problem analytically 
in terms of a biorthogonal series for small Prandtl number, also giving the lowest- 
order temperature field and surface deformations. Smith (1986a) calculated the small 
Reynolds number flow with boundary-layer theory. He studied the influence of small 
Ekman number rotation on the flow pattern as well as the influence of weak 
centrifugal buoyancy. 

The only analytical solution for thermocapillary flows with Re = O(1) has been 
given by Xu & Davis (1983), who obtained similarity solutions for two-dimensional 
steady core flow in the limit of a slender bridge. Steady two-dimensional numerical 
calculations have been carried out by Chang & Wilcox (1976) and Clark & Wilcox 
(1980). They investigated the influence of gravity and axial throughflow on the flow 
in a full zone, i.e. a liquid bridge where the surface temperature attains a local 
maximum thereby inducing two counter-rotating vortices. Fu & Ostrach (1985) have 
found the flow in a half-zone with a monotonic surface temperature distribution to 
be essentially a single-cell flow. 

A number of articles dealing with experiments on thermocapillary convection have 
been published. Not all can be covered here. It has been observed in model 
experiments (Chun 1980) that, if the Reynolds number is increased beyond a critical 
value, the steady two-dimensional toroidal flow undergoes a transition to a three- 
dimensional state which oscillates harmonically close to the onset. Preisser, Schwabe 
& Scharmann (1983) have shown that the periodicity of the azimuthally travelling 
waves depend on the aspect ratio f of the liquid bridge. Experiments for very small 
Rayleigh numbers have been performed by Kamotani, Ostrach & Vargas (1984). 
They suggested that the free-surface deformation of the liquid bridge is an important 
factor causing the oscillations. More recently, Velten, Schwabe & Scharmann (1991) 
have done experiments using fluids of different Prandtl numbers (Pr > 1). They 



Hydrodynamic instubilities in thurmocapillary liquid bridge8 249 

systematically characterized the observed supercritical sptio-temporal structures 
of time-dependent thermocapillary convection in the (Re, r)-plane and showed that 
the prevailing patterns are strongly influenced by the orientation of the gravitational 
acceleration. It was found that the critical Reynolds number for the first appearance 
of oscillations is increased when the liquid bridge is heated from below as compared 
to the critical value for heating from above. 

The experimentally observed instabilities motivated further numerical studies. 
R~ipp, Miiller & Neumann (1989) have simulated the flow within a model problem 
using a time-dependent three-dimensional finite difference scheme. For Prandtl 
numbers less than unity they found stationary flows with broken axisymmetry. On 
increase of the Reynolds number these flows started to oscillate back and forth 
around the axis, contrary to the propagating waves found for Prandtl numbers larger 
than one. The bifurcations of steady axisymmetric flow to time-dependent 
axisymmetric states have been computed by Kazarinoff & Wilkowski (1990). They 
simulated scenarios of transition to chaotic motion under the restriction of 
axisymmetry. Shen et al. ( 1  990) have applied energy stability theory to the basic flow 
in cylindrical half-zones. Critical Reynolds numbem were obtained below which the 
basic state is stable to axisymmetric disturbanoes. Recently, Keitzel et al. (1991) 
obtained energy stability limits for non-axisymmetric disturbances for Pr = 1 and 
various aspect ratios. Their stability limits are close to the experimentally determined 
stability boundaries of Velten et al. (1991). Corresponding numerical values for the 
linear stability boundary for Pr = 1 given by Neitzel et al. (1992), however, lie 
substantially above the energy limits and also above the experimentally determined 
transition Marangoni numbers. The linear stability of steady thermocapillary 
convection in an infinitely long liquid bridge has been calculated numerically by Xu 
& Davis (1984). For Prandtl numbers less than a critical value the critical 
disturbances are hydrothermal spiral waves propagating either up- or downstream of 
the surface flow, whereas for larger Prandtl numbers the neutral mode is an 
axisymmetric travelling wave. Owing to the lack of axial boundaries the predicted 
critical Reynolds numbers are considerably below those observed in experiments. 

Numerical calculations of steady two-dimensional thermocapillary convection in 
other geometries have been made by Sen & Davis (1982), Zebib, Homsy & Meiburg 
(1985), and Carpenter & Homsy (1989). Corresponding stability calculations are due 
to Smith & Davis (1983a, b ) ,  Smith (19866), Smith (1988), and Carpenter & Homsy 

Although a considerable amount of publications on thermocapillary convection in 
liquid bridges has appeared over the past ten years, a coherent picture has not yet 
emerged. Experiments showed that axisymmetry is lost at the onset of time- 
dependence. Two-dimensional stability calculations yielded consistent results 
indicating that the basic state can loose its stability to two-dimensional flows only 
for Reynolds numbers well above those for modulated vortices (Shen et al. 1990). It 
was found (Rupp et al. 1989), moreover, that  the basic state can loose axisymmetry 
without becoming time-dependent. These observations lead to the conclusion that 
the first instability is most likely to be characterized by a loss of spatial symmetry 
rather than the onset of time-dependence. Since no hysteresis has been detected, the 
instability can be expected to be a forward bifurcation. Thus linear stability theory 
should correctly give the stability boundary. 

Here, we calculate the steady two-dimensional basic flow in a half-zone model with 
a mixed Galerkin-Chebyshev -Tau method. The linear stability of the toroidal basic 
flow is investigated by an application of linear stability theory. The stability 

( 1990). 
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equations are solved spectrally to give the critical Reynolds number, azimuthal 
wavenumber and oscillation frequency. In 5 2 the mathematical model is introduced. 
Section 3 deals with the solution method for. the basic state equations and $4 
describes the method for solving the stability equations. In $5 results are presented 
and discussed and they are compared with previous work in $6. The main results are 
summarized in $ 7 .  

2. The mathematical model 
The so-called half-zone model (see e.g. Shen et ul. 1990) has often been employed 

to investigate the role of thermocapillary convection in float-zone crystal growth 
processes. This model relates very closely to experimental models (see, for instance, 
Preisser et al. 1983) and will be briefly summarized here. The flow and temperature 
field in a liquid bridge are considered in the Roussinesq approximation: 

1 

P 
[a ,+u.V]u = --Vp+vV2u+pgTe,, 

v * u  = 0 ,  

[ a , + u - V ] T  = KV'T. 

Using cylindrical polar coordinates the velocity field is given by u(r, 4, z,  t )  = 
ue, f ve+ + we,. The variables T and p ,  and the constants p,  v ,  K ,  /I, g and e, appearing 
in (2.1)-(2.3) denote temperature, pressure, density, kinematic viscosity, thermal 
diffusivity, thermal expansion coefficient, acceleration due to gravity and axial unit 
vect,or, respectively. The liquid is bounded axially by two parallel coaxial circular 
disks of radius R, separated by the distance d ,  which represent no-slip and no- 
penetration boundary conditions. Constant but different temperatures T, and are 
imposed on the upper and lower disks so that the axial boundary conditions are 

u = O  on z = f + d ,  

T = T ,  on z=g, 
T = T  1 on z = - i d .  

Depending on the liquid volume and forces acting, the position r = R($,z, t )  of the 
free surface of the liquid is a function of the azimuthal ($), axial (2) and time ( t )  
coordinates. R has to be determined as part of the solution which must satisfy the 
stress balance on the interface. If shear stresses outside the liquid are neglected, this 
balance is given by 

g . n + z  --+-- n - ( / - n n ) - V a  = - p a n  on r = R ,  GI A3 
where cr, a, R,, 1, pa  and n are the stress tensor of the liquid, surface tension, main radii 
of curvature, ident,ity matrix, ambient pressure and unit outward normal vector, 
respectively. A t  first order the surface tension is a linear function of temperature 

where the mean surface tension a, is taken a t  the reference temperature T,= 
i(q + q). Owing to the presence of temperature gradients, fluid motion is driven 
by buoyancy and thermocapillarity (Va in (2.7)). Here we consider the limit in which 
a, is asymptotically large so that the corresponding forces dominate all other 



Hydrodynamic instabilities in thermocapillaary liquid bridges 25 1 

hydrodynamic and hydrostatic forces. In  this limit and assuming fixed contact lines 
the liquid bridge takes a cylindrical shape (R = R,) and the associated pressure jump 
is po  -pa  = a,/R, with p o  being the static pressure in the liquid zone. If, furthermore, 
(2.8) is utilized, the stress boundary condition (2.7) can be simplified to give 

(2.9) 
(2.10) I (2.11) 

pva,w+ya,T=O 

pvra,(v/r)+y,/rabT = 0 on r = R,, 
u = o  

where (2.11) is the kinematic boundary condition. The thermal conditions at the free 
cylindrical surface are modelled by the heat transfer law 

ka,T+h(T-T,(z)) = 0 on r = R,, (2.12) 

where k is the thermal conductivity of the fluid and h the heat transfer coefficient. 
Throughout, the ambient temperature is assumed to be T , ( z )  = T,+ATz/d with 

We are interested in the evolution of the flow as the surface tension Reynolds 
number Re (1.1) is increased from zero. For creeping flow (Re < 1) and small Prandtl 
number (2.1)-(2.6) and (2.9)-(2.12) admit stationary axisymmetric solutions with a 
flow in the ( r ,  2)-plane and streamlines symmetric with respect to the midplane x = 0 
(Kuhlmann 1989). The latter symmetry is lost for increased Reynolds or Prandtl 
numbers. On further increase of Re even axisymmetry is lost through a stationary or 
oscillatory bifurcation. In  order to identify the transition boundary it is necessary to 
first calculate the nonlinear axisymmetric basic state. 

AT = T,--T,. 

3. Basic state calculations 
We seek solutions of (2.1)-(2.3) with boundary conditions (2.4)--(2.6) and 

(2.9)-(2.12) that are steady and axisymmetric, i.e. a, = a# = 0. For this two- 
dimensional flow a stream function y i  is introduced such that 

where the subscript 0 denotes the basic state and D, = D+ l / r  = a,+ l / r  (the Stokes 
stream function is given by ar@,,). If we further define the normalized temperature 
deviation from the linear conducting (Re = 0) profile cond(z) = T, + ATz/d as 

(3.3) 

the steady-state differential equations can be written in the form 

[DD*+a;I2 $0 = - R e [ ; ( W o ) +  2 (D.$.)az-(a,$,)D.] ( D D * + a w O + j p o ,  Gr 

(3.4) 

(3.5) 

and 
1 

Re Pr 
(D, D + a;) 8, = - D, yi, - [(D, yi,) a, - (a, yi,) UI 8,. 

The solution of these equations must satisfy the boundary conditions 

~ O = a , @ o = 8 0 = 0  on z = f &  (3.6 u-f) 
9-2 
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$, = D D t ~ , - ( a , ~ , + l )  = (D+B)O, = 0 on r = l / f ,  (3.7u-c) 

where the characteristic scales used in (3.4)-( 3.7) for lengths, velocities, and 
temperature are d ,  Re v l d ,  and AT,  respectively. The aspect ratio is denoted by f = 
d/Ro and the dimensionless surface tension Reynolds, Prandtl, Grashof, and Biot 
numbers are defined by 

Re = yd AT/(pv2) ,  (3.8) 

Pr = V / K ,  (3.9) 
Gr = gp ATd3/va, (3.10) 

B = hd/k .  (3.11) 

The Marangoni number Ma = Re Pr is often used by other authors in place of Re.  The 
solution of the problem is expanded into complete radial and axial orthonormal 
functions 

(3.12) 

(3.13) 

where Tn(x) are Chebyshev polynomials. The axial harmonics Rm(z) and Chan- 
drasekhar functions H m ( z )  individually satisfy the corresponding boundary 
conditions (3.6~~-f). They are given by 

and 

where 

sin (mm),  m even 

cos (mrcz), 7k odd, R m ( z )  = d2{ 

m even 

Hrn(z) = { ~ ~ + ( ~ ~ ~ ( z ) ,  m odd. 

sinh ,urn z sin ,urn z 
Srn(2) = sinh &, sin hm ’ 

cosh A, z cos A, z 
cosh &Am cos $Irn ’ 

-- 

-~ C m ( 4  = 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

and the roots pm and A, satisfy 

coth $-cot i,u = 0, tanh :A+ tan $A = 0. (3.18a, b )  

To determine the amplitudes $$‘A and Of&, (3.4) and (3.5) are projected onto H,( z )  
and Rl(z), respectively, by means of the scalar product S$dz. Since $, and 0, are 
coupled through the boundary condition (3 .7b) ,  the same method cannot be used 
radially, if the boundary conditions are to be satisfied exactly. Therefore, a 
Chebyshev-Tau method combined with the mapping 

x = 2 r r - 1  (3.19) 

is applied in the radial direction. The radial dependence is thus removed from the 
bulk equations by projecting them onto T,(x) using the standard Chebyshev weight. 
As has odd and 8, has even parity under inversion ( r  + - r )  we coujd have used odd 
and even Chebyshev polynomials separately on the interval - l/r d r < l/r. The 

L 
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reduced centre resolution of the latter method would he no disadvantage, since the 
basic flow and temperature fields are expected not to vary strongly in the vicinity of 
r = 0. However, we gave preference to  the mapping, because one need not distinguish 
between even and odd functions and the introduction of different collocation points 
for the stability equations (see $4) can be avoided. 

Given the axial Fnd ;adial truncation orders M and N, W ( N +  1 )  algebraic 
equations for y = ($$‘A, OF&) are obtained by projecting (3.4) onto H,(x)  T,(z) for 
1 < 1 < M and 0 Q k < N-4, and projecting (3.5) onto R,(z) T,(x) for 1 Q I < M and 
0 < k QN-2.  The remaining 6N equations are obtained from (3.7) and the 
requirement that the solution must be bounded on r = 0, i.e. 

$, = DD,$, = DO, = 0 on r = 0. (3.20 a - ~ )  

The boundary conditions (3.7a, b )  and (3.20a, b )  are projected onto H 2 ( z ) ,  whereas 
( 3 . 7 ~ )  and ( 3 . 2 0 ~ )  are projected onto R1(z).  Collecting all equations the resulting set 
can be written in the form 

AWo+N(Yo)Yo+K= 0, (3.21) 
with 

and where summation is over all pairwise indices. The driving force of the flow enters 
through the inhomogeneity K,  which results from the conducting temperature profile 
at the liquid surface entering boundary condition (3.7 b) .  The coefficients Aklnm, 
Bklnm, Dklnm, Ekznm, Cklijnm, Fklijnm, and KkL are given in an Appendix.? To solve 
(3.21) the Jacobian is calculated analytically and the solution is obtained by 
Newton-Raphson iteration. 

4. Linear stability calculations 
To investigate the hydrodynamic stability of the basic flow u, = (u,, 0, w,), p ,  and 

0, we consider the temporal evolution of small disturbances u = (u, v, w ) , p ,  and 0 of 
the basic state on the diffusive timescale d 2 / v .  Linearization of (2.1)-(2.3) with 
respect to the disturbance quantities yields 

Gr 
Re 

at u + Re ( u s  Vu, + u, . Vu) = - Vp + V2u +- Be,, 

v * u  = 0) (4.2) 

1 
Pr 

a, 8+ Re  (W + U -  VB, + u,. Ve) = -V0. (4.3) 

The solution of these equations can be expanded into azimuthal normal modes 

t The Appendix is available, on request, from the authors or the Editorial Office. 
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where @i is an integer azimuthal wavenumber, a a complex growth rate, and C.C. 

denotes the complex conjugate. To reduce the number of unknowns, p is eliminated 
by taking the curl of (4.1) and 6 is removed with help of the continuity equation 

The reader is referred to the end of this section for the treatment of f i  = 0. Written 
in components the following real system of equations for 3,8, and 8 is obtained from 
the r -  and #-components of the curl of (4.1) and equation (4.3) : 

-aZ(Uoa,+woa,).ii~, (4.7) 
and 

(a, - V2//Pr) s" = -Re {a + (car + ca,) 0, + (u0 a, + w0 a,) 81. (4.8) 

The solution of (4.6)-(4.8) must satisfy the axial boundary conditions 
- 

.i i=8=i3,8=0=0 on z = , i ,  (4.9 a-h) 

and the boundary conditions at the free surface resulting from (2.9)-(2.12) 

(4.10) 

(4.11) 
1 I r m 2 ~ + ( i / E ) ( ( a r + ~ a a , . i i + a , a , ~ )  = O  on r = = .  

a,a+a,S = o 

G = O  

(a, +B)  S = o 

(4.12) 

(4.13) 

Since u and 13 must be continuously differentiable at  r = 0 we must demand (consider 

(4.14a-c) 

(4.15a-c) 1 (4.16 a-c) 

for example Vu) that 

. i i = z Z = O = O  if m > l  

The latter boundary_ conditions can be verified by Taylor expansion of u and H 
around r = 0:  (C, 8 , 0 )  - (rla-l1, P,  ra), m 2 0 (see also Xu & Davis 1984). Since the 
combined radial order of differential equations (4.6) and (4.7) is five, the total of five 

- 
- 
- 

.ii=i3,.l?,=ar8=0 if a = O  

a , . i i = $ = 0 = 0  if m,=l on r = 0 .  
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radial boundary conditions for .li: and 8 is necessary and sufficient. The corresponding 
conditions on $7 are always satisfied on the boundary, if f i  $. 0. 

It is observed that (4.6)-(4.8) are invariant under inverzion r+--T, if either .ii is 
even and 6, e" are odd functions of r ,  or .ii is odd and 6, 8 are even functions of r .  
Which case applies depends on the disturbance wavenumber and can be 
determined from the asymptotic expansion of the differential equations for r 1 .  
This symmetry enables the calculation of the solution on the extended range 
[ - i/f, l/O, thereby utilizing only even or odd Chebyshev polynomials. We do not 
follow this idea here ; rather we proceed as in Q 3 and map the interval r E [O, 1 /n onto 
X E  [ - 1,1]. The reason is that the utilization of these symmetries introduces the need 
for different collocation points for even and odd functions depending on m and that 
the corresponding computer program would be more involved. It turns out, 
moreover, that the neutral mode does vary in the bulk. Thus the number of 
collocation points near r = 0 should not be too small. Therefore, we expand 

(4.17) 

using the same basis functions as in Q 3. For radial and axial truncation orders N and 
M the total number of unknowns is =(N+ 1) .  W ( N +  1)-7M equations are obtained 
by projecting all equations (4.6)-(4.8) onto R,(z) for l ~ [ l , M ]  and onto 6(x,) with 
Gauss-Lobatto collocation points 

Xk = COS(K(JC+l) / Iv) ,  kE[-1 ,N-11.  (4.18) 

Equations (4.6) and (4.8) are collocated at points with k ~ [ O , N - 2 2 ]  while (4.7) is 
enforced a t  points I ~ E [ O , N - ~ ] .  All equations obtained from collocation a t  xP1 and 
xNPl and the equations obtained from projecting (4.7) onto S(x,-,) are dropped in 
favour of those 7M equations that result from projection of the boundary conditions 
(4.11)--(4.13) and one set out of (4.14)-(4.16) onto R,(z), and projection of (4.10) onto 
H,(z ) .  The resulting system of equations takes the form of' a generalized eigenvalue 
problem 

AllA12A13 BllB12613 

cI. A21A22A23 = B21B22B23 (4.19) 
[A31 A32 A 3 I k t n m  [B31 1332133.]kLn~' 

where x = (finm, Grim, in,) and the square matrices Ai" and Bij given in the Appendix 
(see footnote on p. 000) are of orderM(N+ 1). Since the growth rate a does not appear 
in the boundary conditions, 7M rows of A = Aii are zero thus making A singular. The 
corresponding 7M infinite eigenvalues may be mapped onto some finite arbitrary 
ones (Goussis & Pearlstein 1989) or eliminated by reducing the system to a non- 
singular one of order W ( N +  1)  - 7M (Gary & Helgason 1970; Peters & Wilkinson 
1970). Although the mapping method requires less operations ( O ( n k ) ,  n is the order 
of A and Ic is the number of infinite eigenvalues) as compared to the reduction method 
(O(n2k ) ) ,  this advantage is more than compensated in the present case by the savings 
(cost is O(n3)  operations) in inverting the reduced rather than the complete system. 
For that  reason we employ the reduction method, which has also been used for a 
similar problem by ,Jones (1985~) .  Solving (4.19) this way, ( 3 N - 4 ) M  finite complex 
eigenvalues aj are obtained, their values depending on the control parameters Re, Pr, 
Cr, r a n d  R. The hypersurface on which the maximum real part of these eigenvalues 
vanishes is the stability boundary. 
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Since the critical eigenvalues a, = & io, and the corresponding eigenvectors x,, x,X 
appear as complex conjugate pairs, any neutral solution f E {u, w, @} has the structure 

N M  

j ( x ,  q5, z, t )  = R,(z) T,(x) e’”4 [A,fnm eiwct+A2hm e-iwpt] + c.c., (4.20) 
n=o m = ~  

where A ,  denotes arbitrary complex constants, the asterisk indicates complex 
conjugation, and R,(x) has to  be replaced by Hm(x)  iff = w. Depending on A, ,  A, ,  and 
we the supercritical flow and temperature will appear as a spatial mode (w, = 0) 

f = P(z ,  Z )  cos (m# + G), (4.21) 

as a travelling azimuthal wave (w,  + 0, one A ,  = 0) 

f = F ( x , z )  cos ( q b + w , t + G ( x , z ) ) ,  (4.22) 

or as a standing wave (w ,  =!= 0, [All = lA21 =!= 0) 

f = F ( x ,  x )  cos (YE#) cos (w ,  t +G(x,  2)) .  (4.23) 

The amplitude F and phase G (if o, f 0) depend on the radial and axial coordinates. 
Nonlinear interactions determine the constants A,  and A ,  and therefore the 
character of tJhe supercritical oscillatory solution. 

The procedure described above applies to bifurcations that break rotational 
invariance, i.e. m =l 0. However, the basic state might become unstable to 
axisyrnmetric (m = 0) disturbances. This case has been treated by Shen et al. (1990). 
To include bifurcations t o  axisymmetric states in the present formalism with a 
minimum of changes, we observe that (4.7) and (4.8) can be used without 
modification even if = 0. Since the r-component of the curl of (4.1) vanishes, 
equation (4.6) is substituted by the continuity equation (4.2) and projected in the 
usual way. For YE = 0 boundary condition (4.11) must be dropped and radial 
collocation is now applied at all interior points xk, k ~ [ 0 , N - 2 ] .  This method, in 
which continuity is only weakly satisfied, is a convenient extension. Its purpose is to 
check qualitatively whether or not fi? = 0 can be the most dangerous mode. 

5. Results and discussion 
5.1, Validation of the nuwberical procedure 

Reliable calculations for the two-dimensional base state are available in the 
literature. Therefore, the calculated basic state has been checked by comparison with 
a Stokes flow approximation for small Re and Pr (Kuhlmann 1989) and with 
nonlinear finite difference calculations of Shen et al. ( 1  990). For small Re and Pr we 
found very good agreement with Kuhlmann (1989) even for a truncation order of 
,!I7 = 16, M = 5. Small deviations from the analytical solution occur only in the close 
vicinity of both corners. Agreement up to the thickness of a line has been obtained 
with the basic state streamfunction and temeerature field calculated by Shen et al. 
(1990) for Re = 1000, Pr = 0.01, B = 0.3 and r = 1 (their figure 2a). For Re = 10 and 
Pr = 10, however, our result differs slightly from figure 2 (b )  of Shen et al. (1990). The 
largest deviation occurs in the radial derivatke of the temperature field at the free 
surface. With heat loss included, a, O(r  = l/r) should be negative close to the cold 
corner, where 0 > 0 (cf. (3 .7c)) ,  contrary to the obviously positive radial temperature 
gradient in their figure 2 ( 6 ) ;  (0 = ~ $ 0 , ) .  For comparison our results are shown in 
figures 1 and 2. We note that the heat loss for B = 0.3 is so small that the negative 
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FIGURE 2. As figure 1,  but He = 10 and Pr = 10. 

slope a,O(r = l / f )  < 0 is hardly noticeable in figures 1 and 2. A quantitative 
comparison shows that our value of for the streamfunction 
minimum for Re = 100, Pr = 0.1, B = 0.3, and f = 1 is only 2?40 smaller than the 
value given by Shen (1989) and 5% below that of Pu & Ostrach (1986). 

Care has to be taken if the Marangoni number Ma = Re Pr is so large that a steep 
axial temperature gradient is created at  the cold corner. In this case an insufficient 
mode truncation in the axial direction can result in spatial oscillations of the 
truncated series (Gibbs phenomenon). It is this rapid variation of the fields at 
the cold corner that limits the accessible Prandtl number range. In figure 3 we show 
the energy conservation error at criticality (see further below) by comparing the total 
normalized heat flow through the boundary at z = -4 with the heat flow at z = ij for 
B = 0, i.e. for an insulating radial boundary. In  this case both heat fluxes must be the 
same owing to energy conservation. The Nusselt number has been defined as Nu = 
Jtotal/Jconductive, where J is the total heat flow through the respective surface. The 
agreement between both Nusselt numbers is very good for Pr < 1. However, as Pr 
increases, the error gets larger and reaches 17 YO at Pr = 20. The reason is that at 
large Pr the heat flow through the cold boundary occurs mainly in a small area at 

= - 1.07 x 
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FIGURE 3. Nusselt numbers calculated for 2 = 0.5 (0) and z = -0.5 (0) at criticality for riz. = 1, 

Gr = 0, B = 0, I-= 1, N =  16, and M = 12. 

Rae - Cr, Pr 
f r ~ i  Hardin et al. (1990) present result 

0.333 1 1768 1759 
0.5 1 1832 1826 
1.0 2 2470 2490 
1.333 1 2592 2588 
6.0 1 1.010 x 105 1.007 x 105 

TABLE 1.  Critical Grashof number for the onset of buoyant convection in a vertical cylinder. 
Comparison of the present critical values of - Gr, Pr for N = 14 and M = 10 with the corresponding 
critical Rayleigh number Ra, obtained by Hardin et al. (1990). The value of Ra, for r = 1 has been 
determined graphically from their figure 6. 

r = l/p. Since this region is most susceptible to truncation errors, the comparison of 
both Nusselt numbers is a very severe test, although Nu is an integral quantity. As 
will be discussed below, the instability mechanism for large Prandtl numbers is not 
very sensitive to the details of the corner flow and the convergence of the critical 
values with increasing truncation order is better than that of the energy conservation. 

To test the general procedure a vertical cylindrical container with an insulating 
radial boundary heated from below was considered in the Boussinesq approximation. 
For a calculation of the linear stability boundary of the quiescent base state $o and 
B0 were set to zero and (4.10)-(4.11) were replaced by rigid boundary conditions 
G = 0 and i3,G = 0. The thermocapillary Reynolds number drops out of (4.1)-(4.3) 
and (4.6)-(4.8) by the appropriate scaling u-+ u/Re and 8+ OPT. The accordingly 
modified problem has been solved to obtain critical values of the Rayleigh number 
Ra = - GrPr, which are compared with high-precision linear stability boundaries of 
the quiescent base state given by Hardin et al. (1990). For a truncation of N = 14, 
M = 10, the present results listed in table 1 differ by less than 0.5% from those of 
Hardin et al. (1990). 

These favourable comparisons prove the validity of most parts of the numerics. 
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N = l O  N = 1 2  

M = 6  0 
0 
0 

M = 8  267 (0) 
137 (0) 

0 

M =  I0 259 (0) 
108 (0) 
0 

M =  12 

N =  14 

348 (0) 
748 (0) 
521 (20.9) 

368 (0) 

447 (21.4) 

364 (0) 
721 (0) 
425 (21.8) 

749 (0) 

N =  16 

348 (0) 

516 (20.8) 

369 (0) 
763 (0) 
446 (21.3) 

366 (0) 
751 (0) 
425 (21.7) 

362 (0) 
742 (0) 
417 (22.0) 

737 (0) 

TABLE 2. Influence of the truncation order on the critioal Reynolds number and oscillation 
frequency (in parentheses) for r ~ i  = 1,  fir = 0, and B = 0. Consecutive numbers are given for 
Pr = 0.0078, 0.25, and 4.0. 

However, the buoyancy-induced instability in a vertical cylinder is a smoother 
problem than that of thermocapillary convection. This is because the thermocapillary 
basic state can exhibit strong spatial variations in contrast to the trivial base state 
for the heated cylinder problem (Re  = 0). For that reason the effect of different 
truncation orders on the stability boundary was calculated for selected cases (table 
2). To get a reasonable stability boundary, the radial truncation order N must be 
sufficiently large, e.g. for truncation orders of N < 14 the values for the stability 
boundary have not yet converged, especially for large Prandtl numbers. This might 
have to do with the appearance of boundary layers below the free surfaces (see 
further below), which cannot be resolved for too low truncation orders. The axial 
truncation order M does not have such a dramatic effect on the stability boundary. 
Therefore, slight axial waviness of the solution does not significantly influence the 
integral property Re,. For all the following calculations we used a truncation of N = 
16 and M = 12 and estimate the relative error of Re ,  for m = 1 to be about 1-10% 
depending on Pr. Unless mentioned otherwise an aspect ratio of f = 1 is considered 
in the following. 

5.2. The  Prandtl number dependence of the linear stability boundary and the 
structure of the neutral modes 

The dependence of the linear stability boundary of the steady base state on the 
Prandtl number was determined in the following way. The basic state was calculated 
for a small Reynolds number using a Stokes flow approximation (Kuhlmann 1989) 
as an initial guess. By a stepwise increase of the Reynolds number the basic solution 
was then traced to larger values of R e .  If the stability analysis, which was performed 
for each Reynolds number after convergence of the respective base state, indicated 
a change of sign of the real part of the eigenvalue considered, the zero of the growth 
rate was detected by the secant method or by subdivision of intervals. After that, the 
Prandtl number was changed in small steps and the above procedure was used to 
determine the new stability boundary starting with the previously calculated base 
state as the initial guess. 

= 1 and 2 are 
shown in figure 4 ( a ) .  Both curves have a similar shape. Of these modes, % =  I is the 

Neutral curves of the most dangerous modes for wavenumbers 
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FIUURE 4. ( a )  Neutral curves for f i  = 1 (0 ,  0 )  f i  = 2 (a, A), Gr = 0, and B = 0. The critical 
Reynolds number is shown as function of the logarithm of the Prandtl number. ( b )  Hopf frequency 
w, of the neutral solution. Crosses and open squares are experimental values of Velten et al. (1991) 
obtained for liquid bridges heated from below and above, respectively. The diamond is the energy 
stability limit (fit = 1) obtained by Neitzel et ul. (1991). The dotted lines are guides to the eye. 

most dangerous one. Each neutral curve consists of two different branches. For 
Pr < 1 the basic state looses its stability to a stationary disturbance corresponding to 
the spatial mode (4.21) and the supercritical flow has the shape of a tilted (fit = 1) or 
quenched (m = 2) torus. For larger Prandtl numbers the instability is oscillatory 
with Hopf frequencies w, given in figure 4(b). Here, the neutral solution is a 
superposition of two counter-propagating waves in the azimuthal direction according 
to (4.22) and (4.23). The sharp increase of w, for m = 1 as Pr & 1 is not a discontinuity 
but a continuous change due to the strong turning of the stability boundary. 

The appearance of these different neutral branches must be related to different 
instability mechanisms. The critical value Re,(% = 1) = 362 for Pr = 0.0078 is very 
close to the limiting value for vanishing Prandtl number (Re,(m = 1, Pr = = 
356). By taking this limit, the disturbance equation (4.8) reduces to a Laplace 
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(a)  Pr = 0.088, ( b )  Pr = 0.125, (c )  Pr = 0.177, and ( d )  Pr = 0.250. 

equation for 6. Its solution for the homogeneous boundary conditions given in (4.9), 
(4.13) and (4.14)-(4.16) is 8 = 0. SinceB + 0 for Pr + 0 and h finite, the same equation 
and boundary conditions also govern 8,. Therefore, the complete temperature field 
is given by 6 = 6, = 0 independent of T,(z) and no thermocapillary forces can act 
except for the constant shear stress (DD,qF0 = 1) that is driving the basic flow field. 
Any instability that persists for Pr --f 0 at finite Reynolds number must necessarily 
be hydrodynamic in nature. Consequently, the use of the Reynolds number instead 
of the Marangoni number is appropriate for small Prandtl numbers. 

The small-Pr instability breaks the axisymmetry. Such hydrodynamic symmetry- 
breaking bifurcations have also been observed in other systems, for instance the 
breaking of mirror symmetry in very short Taylor vortex annuli (Barten, Lucke & 
Kamps 1990) or the breaking of axisymmetry in the transition from Taylor vortex 
flow to modulated vortex flow (Jones 1985b). A stationary thermocapillary flow with 
broken axisymmetry has also been found by Rupp et aE. ( 1  989) to exist in cylindrical 
liquid bridges prior to the onset of time-dependent flow. 

Figure 5 (u-c) illustrates the critical disturbance flow pattern for Pr = 0.0078, 
Re, = 362, Gr = 0, andB = 0. In the interior of the liquid bridge the disturbance flow 
is mainly unidirectional, where the inward flow has a positive 6-component and the 
outward flow has a negative 6-component._Mass conservation forces this flow to split 
into two opposite azimuthal jets at r = l/F and q5 = 0, which establish a return flow 
in a small area close to the cold corner and which merge at  $ = rc. Because the basic 
temperature field for small Pr (figure I b )  depends essentially on z only, the 
descending radial outward flow (figure 5a)  transports hot fluid from the upper bulk 
to the surface at g5 = 0 and produces a hot surface spot, A corresponding cold spot is 
generated at  q5 = 7~ (figure 5 c ) .  Azimuthal thermocapillary effects support this 
motion ; however, they are insignificant at  this low Marangoni number. 

By increasing Pr the basic state develops radial temperature gradients and the 
temperature of the fluid transported to the free surface by radial disturbance flow 
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FIGURE 7. Neutral flow field in a horizontal cut at z = -0.15 for Re, = 825, Pr = 0.5, Gr = 0, 
and B = 0. Note the thin surface layer in which the velocity is opposite to the bulk flow. 

can be lower than the basic state temperature at  the surface. In this way a cold spot 
is generated in addition to the hot spot at  4 = 0. It first appears at the hot end at  
z = 4 for Pr x 0.1. For even larger Prandtl numbers this cold spot on top of the hot 
one becomes larger at  the expense of the hot spot, which finally vanishes at Pr w 0.2. 
A neutral surface disturbance temperature sequence illustrating this behaviour is 
shown in figure 6 (a-d). For still larger Prandtl numbers azimuthal thermocapillary 
forces become more effective, suppressing the disturbance flow from the cold spot to 
the hot spot. Although the basic state also depends on P r  with correspondingly 
altered stability properties, the azimuthal thermocapillary forces alone can explain 
the stabilization of the basic state, if the Pr number is increased. If thermocapillarity 
were solely responsible for the low Pr instability, a complete stabilization could have 
been expected for cases in which the radial outward flow is associated with a cold spot 
like in the classical Marangoni problem (Pearson 1958). A total suppression of the 
instability, however, is not observed, giving further evidence for the hydrodynamic 
origin of the instability. Instead, for Pr = O( 1) < 1 the azimuthal return flow takes 
place in a thin shear layer in which the azimuthal velocity changes sign. It is directed 
toward the cold spot at  the surface, whereas it is directed away from it just below a 
thin surface layer. An example is shown in figure 7 for Pr = 0.5. Here the boundary- 
layer thickness is w 0.06lr.  With the smallest distance between adjacent collocation 
points being x O.Ol/F, three collocation points including one boundary point lie 
within the shear layer, which proves that the appearance this boundary layer is 
physical and not a numerical artifact. 

A t  about Pr = 1 the low-Pr stability boundary intersects with another neutral 
branch enclosing a codimension-two point. This large-Pr branch has been followed up 
to Pr NN 20. All neutral modes have the same character along this curve. Since this 
instability branch is distinct from that for small Pr, another mechanism must be 
responsible for it. For large P r  the basic state develops a strong axial shear flow with 
strong radial temperature gradients below the free surface (the hotter fluid being 
closer to it). Under these conditions one is expecting hydrothermal wave instabilities 
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FIGURE 8. Critical disturbance temperature figd at Be, = 595, Pr = 2 ,  Qr = 0, and B = 0:  
(a) azimuthal cut at r = 0 .75 / r ,  (6) horizontal cut at z = 0. 

as described by Smith (1986b).  The streamwise surface temperature gradient present 
in the analysis of Smith & Davis ( 1 9 8 3 ~ )  was required to generate the flow, but is not 
present here a t  midgap, since the streamwise temperature gradients are located at  
the corner regions (cf. Carpenter & Homsy 1990). Note that this temperature 
gradient is not important for the high-Pr instability mechanism given by Smith 
(1986b). In fact we find that the supercritical flow is a superposition of two 
hydrothermal waves. Both waves propagate upstream of the surface flow at a certain 
angle with respect to the vertical axis. This description is equivalent to two 
azimuthal waves propagating in opposite directions and having inclined wave fronts. 
Mathematically this is expressed by a non-zero phase C(x ,  z )  in (4.22). The isotherms 
of a typical wave propagating in the negative $-direction are shown in figure 8(a)  
along an azimuthal cut at r = 0.75/ffor Re = Re, = 595, Pr = 2, Gr = 0, B = 0, and 
F =  1. As in Smith (19863) we find large temperature maxima (minima) in the 
interior of the liquid bridge propagating ahead of the respective surface maxima 
(minima) and conductively heating (cooling) them. This is demonstrated in figure 
8 ( b ) ,  where the corresponding isotherms are shown in a horizontal cut a t  z = 0. The 



Hydrodynamic instabilities in thermocapillary liquid bridges 265 

2000 

1500 

Re 1000 

500 

0 ,  I I I 

-2 - 1  0 1 2 

FIGURE 9. (a) Critical curvesRe, versus log (Pr)  for f i  = 1 and B = 0 (0,  0)  and B = 10 (m, A). ( b )  
Corresponding circular frequencies o, of the neutral mode. Crosses, open squares, and diamond as 
in figure 4. 

details of the corner flow are only important in so far as they determine the strength 
of the surface flow, but they do not directly influence the large-Pr instability, which 
is triggered in the midgap area where the largest radial gradients of the axial velocity 
and the temperature occur. 

5.3. The inJuence of heat loss 

Heat transfer from the liquid bridge to its surroundings is modelled by (3.7c), where 
it has been assumed that the external temperature is equal to the conducting profile. 
The effect of cooling on the base-state stability is demonstrated in figure 9 for 
wavenumber FZ = 1 by comparing the stability boundary for B = 10 (solid squares 
and triangles) with that for an insulating surface (B = 0, dots and circles). The gross 
effect of heat loss is to shift the stability boundary towards larger Prandtl numbers. 
The same qualitative behaviour is also found for = 2. The Hopf frequencies of the 
hydrothermal waves generally increase with increasing heat loss except for those P r  
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where the slope of Re, versus Pr gets extremely large and the neutral curve takes an 
s-shaped form. Here, w, decreases continuously for critical Reynolds numbers larger 
than Re, at the inflexion point of the neutral curve. 

Heat loss at the interface affects both the base state and the disturbances. In the 
small-Pr regime heat loss reduces the radial temperature gradients of the basic state. 
This shifts the Prandtl number region, where the hot spot associated with radial 
outward flow turns into a cold spot, to larger values of Pr. Likewise, the stabilization, 
i.e. the suppression of the azimuthal jets by counter-acting thermocapillary forces, 
is reduced. Thus the influence of heat loss on the base state is destabilizing, if Pr is 
small. If Pr is less than Pr M 0.1, the hot spot corresponding to the radial outflow is 
cooled and the disturbance is reduced, which corresponds to a stabilization. On the 
other hand the suppression of the cold spot by heat loss for Pr > 0.2 corresponds to 
a destabilization. We observe (figure 9a)  that for B = 10 the total effect is always 
destabilizing. In the limit of B-tm the stationary instability branch should reach the 
hydrodynamic limit of Re, M 356 for all Pr numbers. 

Smith & Davis (1983a) showed that the base state is stabilized to hydrothermal 
waves when the Biot number is increased. This effect is solely due to the heat loss of 
the disturbance, since the base state considered was independent of B. In the present 
liquid bridge the influence of heat loss on the fully developed basic state at larger Pr 
is not trivial. But large heat loss will generally reduce the radial temperature 
gradients and the strength of the surface shear flow so that the disturbances cannot 
extract as much energy from the basic state as for B = 0. Therefore, the base state 
is always stabilized to hydrothermal waves by an increase of the Biot number, when 
Pr  is large. 

5.4. The effect of weak buoyancy forces 
Frequently, buoyancy is considered a disturbing effect when thermocapillary flows 
are studied. In  this case, i.e. for weak buoyancy forces, we have not found any 
multiplicity of the two-dimensional basic flow state (for Gr = 0 we have implicitly 
assumed that the base state is unique). However, if destabilizing buoyancy forces 
dominate the base flow in the bulk of the liquid, two different axisymmetric basic 
states can arise, which correspond to either up- or downflow at the centreline. 
Here we consider only bifurcations from a basic state, which is dominated by 
thermocapillary convection. 

Many experiments have been carried out using small volumes of liquid to reduce 
the Grashof number. For a given geometry and in the Boussinesq approximation the 
ratio Gr/Re is a constant when AT is varied experimentally to control Re. Typically, 
this constant is of the order of one. Stability boundaries corresponding to this 
restriction are shown in figure 10(a, b) for Gr = 0 (dots), Gr = R e  (circles), and Gr = 
2Re (triangles). These positive values of the Grashof number correspond to heating 
from above in our notation. No qualitative change in the stability boundaries can be 
observed and in general the basic state is stabilized to a degree, which corresponds 
to the magnitude of Gr, as intuition suggests. The critical oscillation frequencies w, 
of the hydrothermal waves for Pr > 1 are slightly increased under the action of 
stabilizing buoyancy. Since Gr cc Re, the stabilization is most pronounced for the 
largest critical Reynolds numbers, i.e. for Pr x 1.  

Results for fixed Grashof numbers Gr = +ZOO0 are given in figure 11 (a, b) .  The 
stability curve for Gr = 0 is shifted to smaller values of Re, for systems heated from 
below (triangles) and to larger values of Re, if heated from above (circles). An 
exception is found only for large Pr, where the neutral curve for Gr = -2000 has a 
minimum at about Pr z 4. This peculiar behaviour is related to the fact that for fixed 
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FIGURE 10. (a)  Neutml curves and ( b )  Hopf frequencies for m = 1, B = 0, and Gr = 0 (O) ,  
Gr =Re (O), and Gr = 2Re (A). Crosses, open squares, and diamond as in figure 4. 

Gr the Rayleigh number Ra increases linearly with Pr so that the flow may well be 
three-dimensional even for Re = 0. We found, for instance, that the quiescent base 
state (Re = 0, Gr = -2000) is unstable to f i  = 1 disturbances if Pr > Pr* = 1.136 
corresponding to Ra,(fi = 1) = 2272. The study of the different bifurcation branches 
for buoyancy-dominated flows close to the axis Re = 0 is, however, beyond the scope 
of the present investigation. Therefore, the stability boundary Re, given as triangles 
in figure I1 for destabilizing buoyancy forces does not guarantee that the two- 
dimensional flow is linearly stable for all Reynolds numbers Re < Re,, especially if 
the Prandtl number is large and Re < Re,. T t  should be noted that both the equations 
for the two-dimensional base state and those for the three-dimensional disturbances 
are invariant under the transformation (Re, z, u(O), O(O) ,  G, 8) + ( -Re ,  - z, -do), - B ( O ) ,  

- 12, - 8) even for Gr =# 0. Accordingly, all neutral curves are symmetric with respect 
to the line Re = 0. 
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FIGURE 11. (a) Neutral curves and (a) Hopf frequencies for iii = 1, B = 0, and Gr = 0 (O),  
Gr = 2000 (O) ,  and Qr = -2000 (A). Crosses, open squares, and diamond as in figure 4. 

5.5. The injuence of the aspect ratio on the stability boundary 
The critical Reynolds number for the onset of thermocapillary convection with 
wavenumber t?% = 1 is shown in figure 12 for Pr = 0.0078, B = 0, and Gr = 0 (dots) 
as function of various aspect ratios around f = 1 together with the neutral curve for 

!z 
1.1 (Re, = 350) and increases sharply for smaller and larger aspect ratios, while the 
neutral curve for A = 2 increases monotonically with F. The behaviour for large f 
is expected, since in the limit Pr -+ 0 and f+oo the basic flow approaches cylindrical 
Poiseuille flow, which is linearly stable at  any Reynolds number. The observed 
stabilization of the rn = 1 mode for f + O  on the other hand is analogous to the 
behaviour found experimentally by Preisser et al. (1983), though for larger Prandtl 
numbers. They showed that the critical wavenumber increases monotonically with 
decreasing aspect ratio, whereas the critical Reynolds number does not change much. 
This implies an increasing linear stability boundary for the low-wavenumber 
disturbances. Our calculations for Pr = 4 confirm this behaviour (figure 13a). Here, 

= 2 (circles). The critical curve for A = 1 shows a marked minimum at about 
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FIGURE 12. Neutral stability curves versus f for = 1 (0 )  and m = 2 (O), Pr = 0.0078, 
Gr = 0, and B = 0. 
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FIGURE 13. (a) Neutral stability curves versus f for = 1 (0 )  and m = 2 (0) and 
(b)  corresponding Hopf frequencies. Pr = 4.0, Gr = 0, and B = 0. 

the minimum of Re,(% = 1) = 401 (w, = 25) is only weak and occurs at M 1.23. The 
neutral curve for f i  = 2 has a large positive slope and possibly intersects with the 
m = 1 curve at an aspect ratio < 0.75. The corresponding Hopf frequency curves 
shown in figure 13(b) increase monotonically with f. It is seen from figures 12 and 
13 that the neutral curves for f i  = 1 and f i  = 2 show the same qualitative 
dependence on the aspect ratio for both the stationary and the oscillatory neutral 
branches. This indicates the major role of geometry in the pattern selection process 
for thermocapillary convection. 

6. Comparison with previous work 
A comparison of the present results for a finite-size liquid bridge with those 

obtained by Xu & Davis (1984) for an infinitely long liquid bridge shows that end 
effects are important. They introduce new instability mechanisms that are absent in 
the infinite case. The small-Prandtl-number hydrodynamic instability is not present 
in the bulk of a long liquid bridge, since the assumed Poiseuille flow is linearly stable 
for all Reynolds numbers, and it was shown that the critical Reynolds number 
diverges in the infinite case as Pr-tO. Although spiral hydrothermal waves with 
wavenumber f i  = 1 are the most dangerous disturbances in both finite and infinite 
liquid cylinders for a certain range of Prandtl numbers larger than Pr = 1 (depending 
on B ) ,  these are propagating downstream of the surface flow in the infinitely long 
system while they are propagating upstream in the present case as they also do in 
plane thermocapillary liquid layers. A critical axisymmetric oscillating state or 
propagating wave, present in the infinite system for very large Prandtl numbers, has 
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not been detected within the considered Pr range in the present analysis of a finite 
liquid bridge. 

The diamond plotted in figure 4 indicates the energy stability limit of Neitzel et al. 
(1991) for Pr = 1, B = 0.3, Gr = 0, and m = 1. Since the small but finite value of the 
heat loss parameter B = 0.3 leads to only a weak destabilization of the base state as 
compared to B = 0, the difference between the given energy limit of ReEnergy = 1503 
and the present linear theory Re, = 1450 is within the numerical tolerance. This 
result can be considered as another confirmation of the present theory, because 
experiments have shown that the first instability is non-hysteretic, in which case the 
proper energy limit may coincide with the linear stability boundary similar as, for 
example, for the heated cylinder problem, cf. Shen et ul. (1990). The linear stability 
analysis of Neitzel et al. (1992) for the same problem yielded a much larger critical 
Reynolds number (Re, = 2484) and also a different critical mode (f i = 2).  This 
difference might be because the latter authors anticipated a Hopf bifurcation rather 
than a stationary instability. In fact, from figure 4 it is seen that the oscillatory 
instability branch for T%, = 1 turns back just before crossing Pr = 1 .  

To date experiments have been exclusively designed to detect the onset of time- 
dependence rather than the onset of three-dimensionality of the flow. This is one of 
the reasons why the hydrodynamic stationary instability for Pr < 1 has not yet been 
observed experimentally. Most of the model experiments have been carried out with 
fluids of Pr > 1.  Some recently determined stability boundaries and oscillation 
frequencies (Velten et al. 1991) have been included in figures 4 and 9 as squares and 
crosses. Since the linear stability boundary to oscillatory perturbations varies very 
strongly with Prandtl number and heat transfer conditions if Pr = O( 1 ), even slight 
uncertainties in Pr or in the heat transfer can significantly influence the critical 
Reynolds number. In  this context the order of magnitude agreement between theory 
for B = 0 and experiment for Pr = 1 must be considered fortuitous. More obviously, 
the theory for B = 0 does not agree with the experimental results for Pr = 7. Apart 
from the free-surface deformability this difference can be attributed to the large heat 
loss of the liquid bridge in the experiments with NaNO, (Pr = 7) .  From figure 3 of 
Preisser et al. (1983) a Biot number of B x 7 can be estimated. Including heat loss 
(B = 10) diminishes the discrepancy for Pr = 7 considerably. Note, however, that the 
idealized heat transfer law employed (equation (2.12)) is only a phenomenological 
approximation and a detailed comparison would require the calculation of the 
exterior flow and temperature fields. A similar heat loss as for Pr = 7 was also present 
in the experiments with KC1 (Pr  = 1). Since weak buoyancy effects inside the liquid 
bridge could not have qualitatively influenced the transition to hydrothermal waves 
(see figure lo), it is very likely that the onset of oscillations in the latter experiment 
was due to a secondary instability. 

The large and counter-intuitive difference in the critical Reynolds number - 
heated from below is more stable than heated from above - in the experiments for 
Pr = 1 and 7 can be explained by a heat loss that depends on the direction of gravity. 
If the liquid bridge is heated from above a weak eddy is driven by the thermocapillary 
flow in the surroundings, since the buoyant exterior flow is directed upward. This 
eddy separates the rising cold air from the free surface and reduces the heat loss as 
compared to  the case when the liquid zone is heated from below. This way the basic 
state is stabilized to oscillatory disturbances such that the stabilization is most 
pronounced if the liquid is heated from below (Velten et al. 1991). 

It has been shown that steady two-dimensional thermocapillary convection is 
quite stable to axisymmetric disturbances (Shen et al. 1990). This is confirmed by the 
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FIGURE 14. (a) Critical Marangoni number Ma, = Re, Pr and (b )  Kopf frequency aa a function of the 

m = 1, w, + 0; ----, fii = 2;  o, =+ 0. Squares, crosses, and diamond as in figure?. The dots are 
transition points from steady three-dimensional to  oscillatory flow for m = 2 and r = 1.2 given by 
Rupp et al. (1989). 

, m = 2 , 0 ,  = 0;  * . . ' ,  Prandtl number for Gr = 0,  B = 0, and r = 1 : -, f i  = 1, w, = 0 ;  -.-.- 

present study and it is also in agreement with earlier experimental observations 
(Preisser et al. 1983). In the majority of their recent experiments Velten et aE. (1991) 
observed that the stability of the steady state is lost to a mode travelling in the axial 
direction while the phase also depends on the azimuth. This mode was named a 
'mixed mode'. It can be readily explained as a superposition of two counter- 
propagating hydrothermal waves with equal amplitudes, the general form of 
which is (4.23). The appearance as an axially travelling wave with a $-dependent 
wave fronts results from the phase front inclination of the hydrothermal waves. 

As a comparison with results of other authors we show in figure 14 the critical 
Marangoni number as function of the Prandtl number, both on the usual logarithmic 
scale. Dots indicate transition points to time-dependent flow with f i  = 2 obtained for 
7 = 1.2 by Rupp et al. (1989) during a three-dimensional numerical simulation. 
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Clearly, there are orders of magnitude between the first instability and the transition 
to time-dependent flow for small Pr. The strong turning of the large-Pr instability 
branches for fii = 1 and fii = 2 close to Pr = 1 explains the order of magnitude jump 
in the critical Marangoni number B a F c  at which the transition to time-dependent 
flow (Rupp et aZ. 1989) occurs. Figure 15 underlines the importance of heat transfer 
at the free surface (here fii = l ) ,  showing that a much better agreement between the 
numerical and the experimental stability boundary for Pr = 7 can be obtained, if 
heat loss is taken into account. 

7. Summary and conclusions 
The linear stability of two-dimensional thermocapillary flow in a non-isothermal 

liquid bridge has been investigated. Results have been obtained primarily for aspect 
ratio one. In all cases considered an increase of the surface tension Reynolds number 
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Re leads to a three-dimensional flow, which is steady for Pr < 1 and oscillatory for 
Pr  > 1. The origin of the stationary instability is purely hydrodynamic, while the 
oscillatory modes can be identified as large-Pr hydrothermal waves. The critical 
azimuthal wavenumber for p =  1 was always found to be !m = 1. The stability 
boundary for the transition to steady three-dimensional flow with PL = 1 and for 
Pr = 0.0078 depends strongly on the aspect ratio and takes a relative minimum value 
of Re, = 350 when f = 1.1. Heat loss through the free surface results in a decreased 
critical Reynolds number for the stationary instability (small Pr) and in an increased 
value of Re, for the oscillatory instability (large Pr) .  The inclusion of weak buoyancy 
forces acts to stabilize both bifurcation branches if the liquid is heated from above 
and to destabilize if it is heated from below. 

I n  the limit of small Pr the liquid bridge problem considered is similar to the 
problem of a driven cylindrical cavity, in which the flow is forced by imposing a 
constant axial velocity at r = l / f  (Kuhlmann & Adabala 1993). From this analogy 
a similar stationary instability to that described in $5.2 can be expected for the 
mechanically forced system. The no-slip boundary conditions (especially in the axial 
direction at  r = l / f )  for the disturbances in the latter system, however, may 
stabilize the axisymmetric flow to a considerable degree. 

In  view of the many difficulties in establishing well-defined conditions for the heat 
transfer, Reynolds number reduction due to contamination of the free surface, 
surface deformations, surface waves, and possibly non-Boussinesq effects, a 
quantitative agreement between theory and experiment cannot be expected at  
present. It has been shown, however. that the larger-Pr instability in finite-size liquid 
bridges is due to  the hydrothermal wave instability as discussed by Smith (1983). 
The stationary low-Pr instability, which has not yet been studied experimentally. 
remains a subject for future investigations, as does extended high-accuracy 
calculations in the large Prandtl number limit. 

The authors gratefully acknowledge the constructive comments of the referees. 
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